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Abstract: We study the issue of symmetries and associated Ward-like identities in the

context of two-particle-irreducible (2PI) functional techniques for abelian gauge theories.

In the 2PI framework, the n-point proper vertices of the theory can be obtained in various

different ways which, although equivalent in the exact theory, differ in general at finite

approximation order. We derive generalized (2PI) Ward identities for these various n-

point functions and show that such identities are exactly satisfied at any approximation

order in 2PI QED. In particular, we show that 2PI-resummed vertex functions, i.e. field-

derivatives of the so-called 2PI-resummed effective action, exactly satisfy standard Ward

identities. We identify another set of n-point functions in the 2PI framework which exactly

satisfy the standard Ward identities at any approximation order. These are obtained as

field-derivatives of the two-point function Ḡ−1[ϕ], which defines the extremum of the 2PI

effective action. We point out that the latter is not constrained by the underlying symme-

try. As a consequence, the well-known fact that the corresponding gauge-field polarization

tensor is not transverse in momentum space for generic approximations does not consti-

tute a violation of (2PI) Ward identities. More generally, our analysis demonstrates that

approximation schemes based on 2PI functional techniques respect all the Ward identities

associated with the underlying abelian gauge symmetry. Our results apply to arbitrary

linearly realized global symmetries as well.
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1. Introduction

Nonperturbative approximation schemes based on systematic expansions of the two-particle-

irreducible (2PI) effective action [1 – 3] provide powerful calculational tools in situations

where standard (e.g. perturbative) expansion schemes break down. Successful applications

in recent years include the thermodynamic and/or real-time properties of quantum fields

in equilibrium at high temperatures [4, 5] (see [6] for reviews) or close to equilibrium [7], or

the study of far-from-equilibrium dynamics and late-time thermalization [8, 9] (see [10, 11]

for reviews).

An important issue in this context concerns the question of symmetries. One of the

main concerns is that the two-point function defined as an extremum of the 2PI functional,

does not satisfy standard symmetry constraints for generic approximations. For instance,

in scalar theories with spontaneously broken O(N) symmetry, this two-point function does
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not exhibit a Goldstone mode [12, 13].1 A similar situation arises in QED, where the

corresponding photon polarization tensor is not transverse in momentum space at finite

approximation order, see e.g. [15].2

The origin of these apparent violations of Ward identities can be traced back to the

fact that, contrarily to the usual definition of the two-point vertex function as a geomet-

rical object (i.e. the second derivative of the standard (1PI) effective action), the above-

mentioned propagator is obtained from a variational procedure. It is important to remind

that, in the 2PI framework, not only the two-point function, but all higher correlation

and/or proper vertex functions of the theory can be obtained in various different ways,

see for instance [18, 19]. Of course, these different definitions are fully equivalent in the

exact theory. However, this is not true in general at finite approximation order. The key

point is to realize that symmetry constraints on n-point functions can be very different

depending on which definition one is using. For instance, the two-point function can be

obtained either as an extremum of the 2PI effective action, or as the second derivative of

the 2PI-resummed effective action, i.e. the 2PI functional evaluated at this extremum in

propagator space. These are very different objects and are thus constrained differently by

the underlying symmetry. In fact, it has been pointed out that the second derivative of

the 2PI-resummed effective action does satisfy Goldstone theorem for scalar theories in the

broken phase [16, 17] and, similarly, that the corresponding polarization tensor in abelian

gauge theories is indeed transverse in momentum space [11].

Another important issue in the 2PI framework, deeply related to symmetries, concerns

the question of renormalization. There has been important progress in this context in recent

years [20, 18, 21].3 The basic issue is that an intrinsically nonperturbative renormalization

procedure is required in order to deal with (partial) resummations inherent to 2PI approxi-

mation schemes. The renormalization of the variational equation for the two-point function

is now well understood for theories with scalar [20, 17] and/or fermionic [21] degrees of free-

dom and, recently, a complete renormalization procedure for the 2PI-resummed effective

action — that is for all n-point proper vertex functions of the theory — has been developed

for scalar theories [18]. As an important result, it has been shown that global symmetries

— including spontaneously broken symmetries — are preserved by renormalization. This

generalizes the standard results of renormalization theory to 2PI renormalization.

It is important to extend these studies to theories with local symmetries. We have

achieved this program for abelian gauge theories. The present paper is the second of a

series of three, where we present our results. In ref. [23], we have discussed the renor-

malization of the variational equations for the photon and fermion two-point functions

in QED. This requires one to introduce new counterterms, which do not appear in usual

perturbation theory, but which are allowed by the 2PI Ward identities. Therefore, the

underlying gauge symmetry is preserved by renormalization. In ref. [24] we extend on

1See however [14].
2It must be stressed however that, for systematic approximation schemes, such as for instance 2PI loop-

or 1/N-expansions, these apparent violations of standard Ward identities only occur at higher order than

the approximation order, see e.g. [16, 17].
3See also [22] for an approach based on the functional renormalization group.
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this and develop a complete renormalization theory for the 2PI-resummed effective action,

generalizing the techniques put forward in [18] for scalar theories. As a general result, we

show that renormalization preserves the local symmetry (i.e. Ward identities) at any finite

approximation order. This yields a systematic procedure to define (UV) finite approxima-

tion schemes which respect all the symmetries of the theory. However, before embarking

on such an analysis, it is important to identify the different constrains that symmetries of

the classical theory put on the various n-point functions in the 2PI framework. This is

the purpose of the present paper. We restrict to the case of linearly realized symmetries

and focus on the example of QED to illustrate our point. It is crucial to distinguish the

symmetry constraints on the 2PI effective action from the usual symmetry constraints on

the standard (1PI) effective action. We shall generically call the former the 2PI Ward

identities and the latter the 1PI or standard Ward identities.

In section 2, we describe the 2PI formulation of QED, employing a superfield formalism

to deal with bosonic and fermionic fields in a unified way. We point out the importance

of including mixed (e.g. boson-fermion) correlators in the description. Section 3 is the

core of the paper. We analyze the implications of the underlying gauge invariance of the

theory on the bare 2PI functional. This results in generalized Ward identities for the

various n-point proper vertex functions of the theory. We focus on two particular families

of n-point functions in the 2PI framework: we call the first one the set of “2PI-resummed

vertex functions”, defined as field derivatives of the 2PI-resummed effective action, and the

second one the set of “2PI vertex functions”, obtained as field-derivatives of the inverse

propagator Ḡ−1[ϕ], which defines the extremum of the 2PI effective action in propagator

space. Equivalently, these 2PI vertex functions can be obtained as solutions of appropriate

Bethe-Salpeter-like equations.

We show that the former, the 2PI-resummed vertex functions, exactly satisfy standard

Ward identities, as is to be expected from their geometrical interpretation in field space.

This generalizes the standard result for (1PI) vertex functions. As a more unexpected

result, we find that, except for the two-point function Ḡ[ϕ] itself, the 2PI vertex functions

also exactly satisfy the standard Ward identities. This is one of the central results of this

paper. It plays a crucial role in the renormalization program [24]. It is also of particu-

lar importance for various possible applications of 2PI methods to abelian gauge theories.

For instance, this yields an efficient way to construct systematic non-perturbative approx-

imations to the QED photon-fermion-antifermion vertex which satisfies the usual Ward

identity. This guarantees for instance, that standard low-energy theorems [25] are satisfied

at any approximation order. It is also important in the context of transport coefficients

calculations, such as the QED electrical conductivity, see e.g. [26]. Finally, this provides a

useful guide to devise gauge-invariant truncations of Schwinger-Dyson equations.

Our analysis also reveals that 2PI Ward identities do not put any direct constraint

on the two-point function Ḡ[ϕ], but only on its field derivatives. For instance, as already

noticed earlier [23], the photon polarization tensor obtained from the extremum of the 2PI

effective action in QED is not constrained to be transverse in momentum space at any

finite approximation order. Conversely, the nontransversality of the latter should not be

interpreted as a violation of (2PI) Ward identities. In other words, the 2PI functional has
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no reason to satisfy the 1PI Ward identities. The reason for the “variational” polarization

tensor to become transverse in the exact theory is that it gets identical to the “geometrical”

polarization tensor, i.e. the one obtained from the 2PI-resummed two-point function, which

is indeed constrained to be transverse by Ward identities.

For the above results to be useful at all, they should hold for practical approximations.

In section 4, we discuss the symmetry properties of the standard diagrammatic expansion

of the 2PI effective action [2]. We show how to systematically construct gauge-invariant

approximation schemes — i.e. which preserve the (2PI) Ward identities to all orders of

approximation. For the particular case of QED, we find that any approximation is gauge-

invariant in this sense.

A more general discussion of nonlinear (local) symmetries and corresponding Slavnov-

Taylor identities for nPI effective actions, as well as some technical material and a discussion

of particular aspects of scalar QED are given in the appendices. Finally, we mention

that, although the analysis presented in this paper concerns the case of abelian gauge

theories, our results hold for arbitrary theories with linear global symmetries, including

spontaneously broken symmetries.

2. The 2PI effective action in QED

2.1 Generalities and superfield formalism

We consider QED in the covariant gauge and use dimensional regularization. The gauge-

fixed classical action reads, with standard notations,

S[A,ψ, ψ̄] =

∫

x

{

ψ̄
[

i/∂ − e/A − m
]

ψ +
1

2
Aµ

[

gµν∂2 − (1 − λ)∂µ∂ν

]

Aν

}

, (2.1)

where
∫

x
≡

∫

ddx and λ is the gauge-fixing parameter. Aside from the gauge-fixing term,

the classical action is invariant under the gauge transformation

ψ(x) → eiα(x)ψ(x) , ψ̄(x) → e−iα(x)ψ̄(x) , Aµ(x) → Aµ(x) −
1

e
∂µα(x) , (2.2)

where α(x) is an arbitrary real function. The free inverse fermion and photon propagators

are given by

iD−1
0,ᾱα(x, y) = [ i/∂x − m ]ᾱα δ(4)(x − y) , (2.3)

iG−1
0,µν(x, y) =

[

gµν∂2
x − (1 − λ)∂x

µ∂x
ν

]

δ(4)(x − y) . (2.4)

It is convenient to grab the bosonic and fermionic fields A, ψ and ψ̄ in a 12-component

superfield

ϕ ≡







A

ψ

ψ̄t






, (2.5)

where t stands for transposition, here of Dirac indices. We assign a fermion number qm

to each component ϕm of ϕ such that qm = 0 for bosonic (A-like) components, qm = +1
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for fermionic ψ-like components and qm = −1 for fermionic ψ̄-like components. Also, for

simplicity, we employ a notation where the space-time variables, if not written explicitly,

are put together with the Lorentz, or Dirac, or superfield indices. Repeated indices are

implicitly summed over, which includes an integration over space-time variables.

Since we deal with Grassmann variables, we may have to distinguish between left (L)

and right (R) derivatives, defined as follows: The variation δF of a given functional F [ϕ]

under an arbitrary variation δϕ of its argument is given by

δF =
δLF

δϕn
δϕn = δϕn

δRF

δϕn
. (2.6)

In the present paper, we mostly use right derivatives. Therefore, we adopt the convention

that, unless explicitly specified, functional derivatives are understood as right derivatives.

Moreover, successive (right) derivatives are noted such as the rightmost derivative acts

first:

F [ϕ + δϕ] =
∑

n≥0

1

n!
δϕ1 . . . δϕn

δnF

δϕn . . . δϕ1
. (2.7)

We write the classical action eq. (2.1) as

S[ϕ] = S0[ϕ] + Sint[ϕ] (2.8)

with free (quadratic) part

S0[ϕ] =
1

2
ϕmiG−1

0,mn ϕn , (2.9)

and interaction part Sint[ϕ]. Eq. (2.9) defines the inverse free propagator G−1
0 . One has

equivalently

iG−1
0,mn ≡ (−1)qn

δ2S[ϕ]

δϕmδϕn

∣

∣

∣

∣

ϕ=0

. (2.10)

The only nonvanishing components of G−1
0 are given by eqs. (2.3)–(2.4):

iG−1
0 =







iG−1
0 0 0

0 0
(

−iD−1
0

)t

0 iD−1
0 0






, (2.11)

where the symbol t for transposition includes space-time variables.

To define the 2PI effective action, one introduces the following generating functional [2]:

eiW [J ,K] =

∫

Dϕ̂ ei{S[ϕ̂]+ϕ̂m Jm+ 1
2
ϕ̂mϕ̂n Knm} , (2.12)

with linear and bilinear external sources J and K. Notice that the components Jm and Kmn

of these classical sources are either usual (commuting), or Grassmann (anti-commuting)

functions, as appropriate. It follows from eq. (2.12) that the bilinear source K has the

following property under transposition in superfield space:

Kmn = (−1)qmqnKnm . (2.13)
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The connected one- and two-point functions ϕ and G in the presence of sources are defined

as
δLW

δJm
≡ ϕm (2.14)

and
δLW

δKnm
≡

1

2
(ϕm ϕn + Gmn) . (2.15)

The 2PI effective action is the double Legendre transform of the generating functional

W [J ,K]:

Γ2PI[ϕ,G] = W [J ,K] −
δLW

δJm
Jm −

δLW

δKmn
Kmn . (2.16)

One has the obvious relations:

δRΓ2PI

δϕm
= −Jm − ϕnKnm (2.17)

and
δRΓ2PI

δGmn
= −

1

2
Knm . (2.18)

Using the decomposition (2.8) of the classical action, the 2PI functional can be para-

metrized as (see [1, 2] and appendix B)

Γ2PI[ϕ,G] = S0[ϕ] +
i

2
Str LnG−1 +

i

2
StrG−1

0 G + Γint[ϕ,G] , (2.19)

where Str denotes the functional supertrace (see appendix B), G−1
0 is the free inverse

propagator defined in eq. (2.10) and Γint[ϕ,G] is the set of closed two-particle-irreducible

(2PI) diagrams — up to an overall factor (−i) — with lines corresponding to G and vertices

obtained from the shifted action Sint[ϕ+ ϕ̂], where ϕ̂ is the integration variable in the path

integral representation (2.12).

The physical correlator Ḡ[ϕ] in the presence of a nonvanishing field ϕ is obtained

for vanishing bilinear sources K = 0, which corresponds to the stationarity condition, see

eq. (2.18),
δΓ2PI[ϕ,G]

δG

∣

∣

∣

∣

Ḡ[ϕ]

= 0 . (2.20)

Using the properties of the supertrace (see appendix B), this can be written as

Ḡ−1[ϕ] = G−1
0 − Σ̄[ϕ] , (2.21)

where the components of the self-energy Σ̄[ϕ] are given by

Σ̄mn[ϕ] ≡ (−1)qn 2i
δΓint[ϕ,G]

δGnm

∣

∣

∣

∣

Ḡ[ϕ]

. (2.22)

Finally, the effective action Γ[ϕ], the generating functional for 1PI n-point vertex

functions, is obtained as

Γ[ϕ] ≡ Γ2PI[ϕ, Ḡ[ϕ]] . (2.23)

This defines the 2PI-resummed effective action. The above equation is a trivial identity in

the exact theory. For finite approximations however, eqs. (2.19), (2.20) and (2.23) define

an efficient way to devise systematic nonperturbative approximations of the effective action

Γ[ϕ] through systematic expansions of the functional Γint[ϕ,G] in eq. (2.19) [18].
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2.2 A note on mixed two-point correlators

As described above, in order to define the 2PI effective action in full generality, one needs

to introduce all possible bilinear sources in (2.12) or, equivalently, all two-point correlators

for Maxwell and Dirac fields (see also [27 – 29]). These include the usual ones:

Gµν(x, y) ≡
〈

Aµ(x)Aν(y)
〉

c
; Dαβ̄(x, y) ≡

〈

ψα(x)ψ̄β̄(y)
〉

c
, (2.24)

as well as the mixed correlators:

Kαν(x, y) ≡
〈

ψα(x)Aν(y)
〉

c
; K̄µβ̄(x, y) ≡

〈

Aµ(x)ψ̄β̄(y)
〉

c
(2.25)

and

Fαβ(x, y) ≡
〈

ψα(x)ψβ(y)
〉

c
; F̄ᾱβ̄(x, y) ≡

〈

ψ̄ᾱ(x)ψ̄β̄(y)
〉

c
. (2.26)

Here, the brackets denote expectation values in presence of external sources:4

〈

F [ϕ̂]
〉

≡

∫

Dϕ̂ F [ϕ̂] ei{S[ϕ̂]+ϕ̂m Jm+ 1
2
ϕ̂mϕ̂n Knm}

∫

Dϕ̂ ei{S[ϕ̂]+ϕ̂m Jm+ 1
2
ϕ̂mϕ̂n Knm}

, (2.27)

and the subscript c stands for connected expectation values. Notice that G, D, F and F̄ are

usual commuting functions, whereas K and K̄ are anticommuting (Grassmann) functions.

The various correlators (2.24)–(2.26) can be put together as components of the con-

nected correlator of superfields

G ≡
〈

ϕ̂ ϕ̂t
〉

c
, (2.28)

or, in components, Gmn = 〈ϕ̂mϕ̂n〉c . One has explicitly,

G =







G Kt K̄

K F D

K̄t −Dt F̄






. (2.29)

Notice that under transposition, see also eq. (2.13),

Gmn = (−1)qmqnGnm . (2.30)

It follows that the inverse propagator has the symmetry property

G−1
mn = (−1)qmqn+qm+qnG−1

nm . (2.31)

One easily checks, using eqs. (2.10) and (2.22), that both the free inverse propagator G−1
0

and the self-energy Σ̄[ϕ] behave as inverse propagators under transposition, as they should,

see eq. (2.21). One has, explicitly,

Σ̄ =







Σ̄AA Σ̄Aψ −Σ̄t
ψ̄A

−Σ̄t
Aψ Σ̄ψψ −Σ̄t

ψ̄ψ

Σ̄ψ̄A Σ̄ψ̄ψ Σ̄ψ̄ψ̄






.

4In terms of field operators, the above correlation functions should involve a bosonic/fermionic T -

product. This, however, is not needed in the path integral formulation employed here.
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All mixed correlators vanish in the absence of external sources.5 But it is important to

stress that their role is crucial in intermediate calculations involving functional derivatives.

For instance the function δΓ2PI/δKδK̄ does not vanish for K = 0. Only in a few specific

cases, when one restricts one’s attention to simple particular vertex functions, do these

mixed correlators play no role and can be discarded from the beginning, that is directly at

the level of the 2PI effective action (see below).

2.3 2PI and 2PI-resummed vertex functions

In the 2PI framework, n-point vertex functions can be obtained in different ways, see

e.g. [16 – 19], all of which are of course strictly equivalent in the exact theory, but which

differ in general for finite approximations. The most straightforward definition is via the

usual n-th derivatives of the (2PI-resummed) effective action (2.23):

Γ
(n)
1...n ≡

δnΓ[ϕ]

δϕn · · · δϕ1

∣

∣

∣

∣

ϕ̄

, (2.32)

taken at ϕ = ϕ̄, the physical value of the field, obtained from the stationarity condition

δΓ[ϕ]

δϕ1

∣

∣

∣

∣

ϕ̄

= 0 , (2.33)

which corresponds to vanishing external sources, see eqs. (2.17) and (2.18).6 We shall refer

to the vertex functions (2.32), obtained from the 2PI-resummed effective action (2.23), as

the 2PI-resummed vertex functions.

Other possible definitions of n-point vertex functions involve derivatives of the 2PI

generating functional (2.19) with respect to the two-point function G, see e.g. [30, 7, 17 –

19]. For instance, the two-point vertex function, which is nothing but the field self-energy

can either be obtained from the second derivative of the 2PI-resummed effective action, as

in eq. (2.32) above, or directly from eq. (2.22). In turn, higher n-point functions can be

obtained as derivatives of the self-energy Σ̄[ϕ]:

iV
(p+2)
mn;1···p ≡ (−1)qm

δpΣ̄nm[ϕ]

δϕp · · · δϕ1

∣

∣

∣

∣

ϕ̄

. (2.34)

The fact that V (p+2) defines the (p + 2)-point vertex function directly follows from the

relation:

(−1)qn
δ2Γ[ϕ]

δϕmδϕn
= iḠ−1

mn[ϕ] , (2.35)

which holds for arbitrary ϕ in the exact theory, as shown in appendix C (see also [2]). In

the exact theory, one has therefore

V
(p+2)
mn;1···p = Γ

(p+2)
mn1...p , (2.36)

5 More precisely, in the absence of fermionic and mixed sources, i.e. Jm = 0 for qm 6= 0 and Kmn = 0 for

qm + qn 6= 0, the theory has a global U(1) symmetry, which implies, in particular, that ϕm = 0 for qm 6= 0

and Gmn = 0 for qm + qn 6= 0.
6For (gauge fixed) QED in C-invariant physical states, ϕ̄ = 0.
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for p ≥ 0. We shall refer to the functions V (n), defined in eq. (2.34) for n ≥ 2, as the

2PI n-point vertex functions.7 There are other possible definitions of higher order vertex

functions involving more than one derivative of the 2PI effective action with respect to the

two-point function G [30, 7, 18, 19]. We shall not consider these in the present paper.

At finite approximation order, the identity (2.35) — and therefore (2.36) — is not sat-

isfied in general and thus the various definitions of n-point vertex functions, e.g. eqs. (2.32)

and (2.34), differ. Notice however that for systematic 2PI approximation schemes, such

as for instance a loop- or a 1/N -expansion, the identity (2.35) is only violated at higher

order than the approximation order, see e.g. [16 – 19]. Therefore, the different definitions

of n-point vertex functions all agree with each other at the approximation order.8

The 2PI-resummed vertex functions (2.32) can be directly related to the 2PI vertex

functions (2.34) through eq. (2.23). Indeed, derivatives of the 2PI-resummed effective

action Γ[ϕ] implicitly involve derivatives of Ḡ[ϕ], which can be directly related to the 2PI

vertex functions (2.34) through eq. (2.21). Here, we illustrate this point focusing on cubic

theories — relevant for the present QED case — for which various simplifications occur

(see [24] for a detailed discussion). For a cubic interaction, we write the interaction term

in the classical action as

Sint[ϕ] =
1

3!
λmnp ϕmϕnϕp , (2.37)

where the classical vertex λ is such that, for each permutation of a pair of neighboring in-

dices, λmnp = (−1)qmqnλnmp, etc. Notice also that Lorentz invariance implies that λmnp 6= 0

only if qm + qn + qp = 0. Thus the only nonvanishing components of λ are c-numbers. For

such theories, it is easy to see that the ϕ-dependence of Γint[ϕ,G] is all contained in the

zero-loop (classical) and one-loop contributions:9

Γint[ϕ,G] = Sint[ϕ] + Γ1−loop
int [ϕ,G] + Γ2[G] , (2.38)

where

Γ1−loop
int [ϕ,G] =

1

2
λmnp ϕm Gnp . (2.39)

Here, Γ2[G] is the sum of n-loop closed 2PI diagrams with n ≥ 2, with lines given by G and

vertices given by eq. (2.37). Therefore, the first derivative of the 2PI-resummed effective

action has the simple exact expression

δΓ

δϕ1
=

δΓ2PI

δϕ1

∣

∣

∣

∣

Ḡ

=
δS

δϕ1
+

1

2
λ1mnḠmn[ϕ] , (2.40)

where we used the stationarity condition (2.20) in writing the first equality. Differentiating

once more with respect to the field, one obtains the following expression for the 2PI-

7We stress that the name “2PI vertex function” is meant to recall the definition of these functions.

It should be kept in mind that these are really proper vertex functions and are, therefore, one-particle-

irreducible, not two-particle-irreducible objects.
8This is for instance crucial for the renormalization program [18].
9For cubic theories, the only closed 2PI diagrams one can construct with the ϕ-dependent vertices of

the shifted action S[ϕ + ϕ̂] have either zero (classical vertex) or one loop, see also section 4 below.
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resummed two-point function (see [24] for details),

δ2Γ

δϕ2δϕ1

∣

∣

∣

∣

ϕ̄

= (−1)q1iG−1
0,21 +

1

2
λ1mn

(

Ḡ
δΣ̄

δϕ2
Ḡ

)

mn

, (2.41)

where the term between brackets is to be interpreted as a matrix product and it is also

understood that the r.h.s. is to be evaluated for ϕ = ϕ̄. Here, we explicitly used the fact

that ϕ̄ = 0.10

Taking further derivatives with respect to the field ϕ, one easily obtains explicit expres-

sions for higher 2PI-resummed vertex functions in terms of 2PI-vertices (2.34). As clear

from the above example, 2PI-resummed vertices of a given order involve higher-order 2PI

vertices in general. For instance, to compute the 2PI-resummed two-point function Γ(2)

through eq. (2.41), one needs the 2PI three-point vertex V (3) ∝ δΣ̄/δϕ. As for 2PI vertices

themselves, they are solution of integral, Bethe-Salpeter-like equations [30, 7, 18, 19, 24].

For instance the 2PI three-point vertex discussed here satisfies the following equation [24]:

(−1)qn
δΣ̄mn

δϕp

∣

∣

∣

∣

ϕ̄

= iλnmp +

(

Ḡ
δΣ̄

δϕp
Ḡ

)

ab

2iδΓint

δGabδGnm

∣

∣

∣

∣

Ḡ

, (2.42)

where it is again implicitly understood that ϕ = ϕ̄ on the r.h.s. of the equality. Similar

equations can be derived for higher-order 2PI vertices. It is to be noticed that the equation

for a given 2PI vertex only involves 2PI vertices of equal or lower order (see e.g. [18, 24, 19]).

It is instructive to write the above equations in terms of the components of the super-

fields in the case of QED. The only nonvanishing components of the classical vertex are

the various permutations of

λAµψ̄ᾱψα
(x, y, z) = −eγµ

ᾱα δ(4)(x − y) δ(4)(x − z) , (2.43)

where we made explicit the space-time dependence. The interaction part of the 2PI effective

action is given by eq. (2.38) with the classical term

Sint[A,ψ, ψ̄] = −e

∫

x

ψ̄(x)/A(x)ψ(x) , (2.44)

and the one-loop term

Γ1−loop
int [A,ψ, ψ̄,G] = e

∫

x

{

tr[/A(x)D(x, x)] − ψ̄(x) /K(x, x) − /̄K(x, x)ψ(x)
}

. (2.45)

This is represented diagrammatically in figure 1. The functional Γ2[G] is the sum of closed

2PI diagrams with the usual QED vertex and with lines given by the various components

of G, see eq. (2.29). The first (two-loop) contributions are represented in figure 2.

10We also used the fact that in the absence of external fermionic and mixed sources, the theory has a

global U(1) symmetry corresponding to net fermion number conservation. As a consequence, any quantity

having a nonvanishing fermion number vanishes. For instance, the mixed components of the correlator

vanish; also δΣ̄mn/δϕp = 0 unless qm + qn + qp = 0, etc.
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+ +

Figure 1: Explicit one-loop contributions to iΓint[ϕ,G] in QED, see eq. (2.45). The crosses

represent the fields A, ψ or ψ̄; The straight line in the first graph represents the fermion correlator

D ≡ 〈ψψ̄〉, while the mixed wavy-straight lines in the last two diagrams represent the mixed boson-

fermion correlators K ≡ 〈ψA〉 and K̄ ≡ 〈Aψ̄〉. Arrows are associated with a ψ if they point towards

a vertex and with a ψ̄ otherwise. The black dot represents the usual QED vertex. Together with

the contribution from the classical action, this gives the exact field-dependence of the 2PI effective

action in QED.

+ + + +

Figure 2: Leading (two-loop) contributions to iΓ2[G] in QED in a loop expansion. Wavy lines

represent the gauge field propagator G ≡ 〈AA〉; Straight lines represent the fermion correlators

D ≡ 〈ψψ̄〉, F ≡ 〈ψψ〉 and F̄ ≡ 〈ψ̄ψ̄〉; Finally, mixed wavy-straight lines represent the mixed

boson-fermion correlators K ≡ 〈ψA〉 and K̄ ≡ 〈Aψ̄〉. The convention for arrows is the same as in

figure 1

To distinguish photon and fermion legs, it is useful to employ the following notation

for the 2PI-resummed vertex function with 2m fermion and n photon legs:11

Γ
(2m,n)
ᾱ1···ᾱm,α1···αm,µ1···µn

≡ Γ
(2m+n)

ψ̄ᾱ1 ···ψ̄ᾱmψα1 ···ψαm Āµ1 ···Aµn
. (2.46)

For instance, the photon and fermion two-point functions are written as Γ
(0,2)
µν ≡

Γ
(2)
AµAν = δΓ[ϕ]/δAν δAµ|ϕ̄=0 and Γ

(2,0)
ᾱα ≡ Γ

(2)

ψ̄ᾱψα
= δΓ[ϕ]/δψαδψ̄ᾱ|ϕ̄=0 respectively. The

latter are obtained from eq. (2.41) as, see ref. [24],

Γ(0,2)
µν (x, y) = iG−1

0,µν(x, y) + e

∫

uv

tr

(

γµ D̄(x, u)
δΣ̄ψ̄ψ(u, v)

δAν(y)
D̄(v, x)

)

, (2.47)

where the trace is over Dirac indices, and

Γ
(2,0)
ᾱα (x, y) = iD−1

0,ᾱα(x, y) − e

∫

uv

γµ
ᾱβ

(

D̄(x, u)
δΣ̄ψ̄A(u, v)

δψα(y)
Ḡ(v, x)

)

βµ

. (2.48)

The 2PI photon-fermion vertex functions iV
(3)

ψψ̄A
= δΣ̄ψ̄ψ/δA and iV

(3)

Aψ̄;ψ
= δΣ̄ψ̄A/δψ ap-

pearing on the r.h.s. of eqs. (2.47) and (2.48) respectively satisfy the following integral

11We employed a slightly different notation in ref. [23].
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equations [24], see eq. (2.42):

δΣ̄ᾱα
ψ̄ψ

δAµ
= −ieγµ

ᾱα +

(

D̄
δΣ̄ψ̄ψ

δAµ
D̄

)

ββ̄

−iδ2Γint

δDββ̄δDαᾱ

∣

∣

∣

∣

∣

Ḡ

, (2.49)

and
δΣ̄ᾱµ

ψ̄A

δψα
= −ieγµ

ᾱα +

(

D̄
δΣ̄ψ̄A

δψα
Ḡ

)

βν

iδ2Γint

δKβνδK̄µᾱ

∣

∣

∣

∣

Ḡ

, (2.50)

where we leave space-time variables implicit for simplicity.12 In obtaining eqs. (2.49)–

(2.50), we have assumed C-invariance. It is implicitly understood that the various terms

in eqs. (2.47)–(2.50) are to be evaluated for vanishing fields A = 0, ψ = 0 and ψ̄ = 0.

It is remarkable that eqs. (2.47) and (2.48) have a very similar structure as standard

Schwinger-Dyson equations for QED two-point functions. Here, in place of 2PI-resummed

two- and three-point vertex functions which would appear on the r.h.s. for Schwinger-Dyson

equations, appear the corresponding 2PI vertex functions, defined previously.13 This would

make no difference in the exact theory, where 2PI-resummed and 2PI vertex functions are

identical. However it does make a difference with standard Schwinger-Dyson equations at

finite approximation order. For instance, a remarkable feature of the present equations

is that the three-point vertex functions appearing on the r.h.s. ’s satisfy closed integral

equations, eqs. (2.49)–(2.50), and do not involve higher order vertex functions, as would

be the case in standard Schwinger-Dyson hierarchy.

Notice that eq. (2.48) for the fermion two-point function Γ(2,0) illustrates the impor-

tance of keeping mixed correlators in intermediate calculations. Indeed, although Σ̄ψ̄A

vanishes in the absence of sources, the 2PI three-point function δΣ̄ψ̄A/δψ is nonzero. Not

including mixed correlators in the 2PI generating functional would lead to a trivial (free)

expression for Γ(2,0), eq. (2.48).

3. Symmetries

3.1 2PI Ward identities

Apart from the gauge fixing term, the classical action (2.1) is invariant under the gauge

transformation (2.2). This puts constraints on the ϕ- and G-dependence of the 2PI effective

action Γ2PI[ϕ,G] and, in turn, on the ϕ-dependence of the 2PI-resummed effective action

Γ[ϕ]. Equivalently, this results in nontrivial relations between various (2PI and/or 2PI-

resummed) n-point vertex functions. To analyze this, we write the classical action as

S[ϕ] = Ssym[ϕ] + Sgf [ϕ] (3.1)

12It is understood that the first terms on the r.h.s. of both eqs. (2.49) and (2.50), i.e. the classical vertex,

is local in space-time. We do not write explicitly the corresponding delta functions (see eq. (2.43)) for

notational convenience.
13This is also true for higher 2PI-resummed vertex functions. This is rooted in the fact that the interaction

term in the classical action is purely cubic.
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where Ssym[ϕ] is the gauge-invariant classical QED action and Sgf [ϕ] is the gauge fixing

term. We consider the infinitesimal transformation

ϕ → ϕ + δ(α)ϕ , (3.2)

where for general linearly realized symmetries14

δ(α)ϕ = δAϕ + δB , (3.3)

with δA and δB field-independent two- and one-point functions of space-time respectively.

For the U(1) transformation (2.2), one has explicitly

δA(x, y) = δ(4)(x − y) iα(x)Q , (3.4)

with Q a diagonal matrix in superfield space, whose components are given by the fermionic

charges: Qmn = qmδmn, and

δB(x) = (−∂α(x)/e, 0, 0)t . (3.5)

Performing the change of variable ϕ̂ → ϕ̂ + δ(α)ϕ̂, with δ(α)ϕ̂ ≡ δA ϕ̂ + δB in the path

integral (2.12) and using the fact that the measure Dϕ̂ is invariant up to a multiplicative

constant, one easily obtains, using standard manipulations, the following identity, which

expresses the fact that the functional W[J ,K] is unaffected by this change of integration

variables, at linear order in the infinitesimal transformation:
〈

δ(α)Sgf [ϕ̂] + δ(α)ϕ̂m Jm + δ(α)ϕ̂m ϕ̂n Knm

〉

= 0 , (3.6)

where

δ(α)Sgf [ϕ̂] ≡ δ(α)ϕ̂p
δSgf [ϕ̂]

δϕ̂p
(3.7)

is the variation of the gauge-fixing action under (3.2) at linear order in δ(α)ϕ̂.

Using the relations (2.17) and (2.18), eq. (3.6) can be traded for a constraint equation

for the 2PI functional:

δ(α)ϕp
δΓ2PI

δϕp
+ δ(α)Gmn

δΓ2PI

δGmn
=

〈

δ(α)Sgf [ϕ̂]
〉

, (3.8)

with δ(α)ϕ given by eq. (3.3) and

δ(α)G ≡
〈(

δ(α)ϕ̂ ϕ̂t + ϕ̂ δ(α)ϕ̂t
)〉

c
= δAG + G δAt . (3.9)

Note that, here, the gauge variations δ(α)ϕ and δ(α)G have simple expressions because the

symmetry under consideration is linear. Nonlinearly realized symmetries are discussed in

appendix A.

14In this paper, we restrict our attention to the case where bosonic and fermionic components of the

superfield are not mixed by the symmetry transformation. This means that δAmn 6= 0 iff (−1)qm = (−1)qn

or, equivalently, |qm| = |qn|. In particular, the only nonvanishing components of the matrix δA are c-

numbers.

– 13 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
7

For linear gauges, the gauge fixing term is a quadratic functional of the electromagnetic

field only. Since the latter has a purely affine gauge transformation, one has the obvious

relation:
〈

δ(α)Sgf [ϕ̂]
〉

= δ(α)Sgf [ϕ] = δ(α)ϕp
δSgf [ϕ]

δϕp
. (3.10)

Then eq. (3.8) can be rewritten as

[

δ(α)ϕp
δ

δϕp
+ δ(α)Gmn

δ

δGmn

]

(

Γ2PI[ϕ,G] − Sgf [ϕ]
)

= 0 , (3.11)

which states that the functional Γsym
2PI [ϕ,G] defined as

Γsym
2PI [ϕ,G] ≡ Γ2PI[ϕ,G] − Sgf [ϕ] (3.12)

is invariant under the infinitesimal (gauge) transformation defined by eqs. (3.3) and (3.9).

Eq. (3.11) reflects the underlying (gauge) symmetry of the classical action at the level of

the 2PI effective action. This generalizes the standard result that the gauge fixing term

— or any quadratic functional of the electromagnetic field only — is not modified by loop

(quantum) corrections. This result can easily be generalized to arbitrary higher (nPI)

effective actions (see appendix A).

Using eq. (2.20), one recovers the standard Ward identities for the 2PI-resummed

effective action (2.23):15

δ(α)ϕp
δ

δϕp

(

Γ[ϕ] − Sgf [ϕ]
)

= 0 , (3.13)

which states that the functional Γsym[ϕ] defined as

Γsym[ϕ] ≡ Γ[ϕ] − Sgf [ϕ] (3.14)

is invariant under the gauge-transformation (3.3). One has clearly

Γsym[ϕ] = Γsym
2PI [ϕ, Ḡ[ϕ]] . (3.15)

The standard way to exploit eq. (3.13) is to take successive derivatives of both sides

of the equality with respect to ϕ and to set ϕ = ϕ̄. This directly generates the standard

hierarchy of Ward identities for the 2PI-resummed n-point functions (2.32), see section 3.3

15It is interesting to note that for theories with cubic interactions, eq. (2.37), the 1PI Ward identities can

be entirely expressed in terms of the function Ḡ[ϕ]. Indeed, inserting eq. (2.40) into eq. (3.13) and using the

fact that, apart from the gauge fixing term, the classical action is gauge-invariant, i.e. δ(α)ϕpδ(S−Sgf)/δϕp =

0, the 1PI Ward identities take the remarkably compact form:

λpmn δ(α)ϕp Ḡmn[ϕ] = 0 .

For QED, this reads, explicitly:

−
1

e
tr(/∂xḠψψ̄(x, x; ϕ)) + i/̄GAψ̄(x, x; ϕ) ψ(x) − iψ̄(x) /̄GψA(x, x;ϕ) = 0 .

where (/̄GAψ̄)α ≡ Ḡµᾱ

Aψ̄
γµ,ᾱα and (/̄GψA)ᾱ ≡ γµ,ᾱα Ḡαµ

ψA. We leave to the reader the instructive exercise to check

that the above equation indeed generates standard Ward identities for 2PI-resummed vertex functions.
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below. One may be tempted to adopt a similar strategy for exploiting eq. (3.11), by

taking functional derivatives with respect to either ϕ or G. It can be checked by direct

inspection that taking derivatives of eq. (3.11) with respect to ϕ does not bring nontrivial

information for cubic theories (2.37). This is due to the fact that, in that case, the exact

field dependence of Γ2PI[ϕ,G] is rather simple, see eq. (2.38). Differentiating eq. (3.11) with

respect to the propagator G and setting G = Ḡ[ϕ] generates nontrivial relations between

so-called 2PI kernels, i.e. functions of the type δnΓint/δG
n|Ḡ[ϕ] for arbitrary ϕ. However,

it is not easy to extract useful information for, say the 2PI proper vertex functions (2.34),

from these relations. We shall not explore this direction further in the present paper.

In the next subsection, we follow a different strategy and exploit another aspect of

the 2PI Ward identities (3.11). We point out that the latter does not only restrict the

functional form of the 2PI functional, but also strongly constrains the field dependence of

the correlator Ḡ[ϕ] or, equivalently, of the self-energy Σ̄[ϕ], see eq. (2.21). In turn, this

gives direct constraints for the 2PI vertex functions (2.34).

3.2 Ward identities for 2PI vertex functions

As an immediate consequence of eq. (3.12), one has that the physical correlator Ḡ[ϕ],

defined as in eq. (2.20), is alternatively obtained as

δΓsym
2PI [ϕ,G]

δG

∣

∣

∣

∣

Ḡ[ϕ]

= 0 , (3.16)

i.e. as the stationary point of a symmetric — gauge-invariant in the sense defined in the

previous section — functional. Let us now show that this constrains the field dependence

of Ḡ[ϕ]. Taking a derivative of eq. (3.11) with respect to G, one obtains

δ(α)ϕp

δ2Γsym
2PI

δϕpδGrs
+ δ(α)Gmn

δ2Γsym
2PI

δGmnδGrs
+

δ(δ(α)Gmn)

δGrs

δΓsym
2PI

δGmn
= 0 . (3.17)

Now, from eq. (3.16) it follows that

δ2Γsym
2PI

δϕpδGrs

∣

∣

∣

∣

Ḡ[ϕ]

+
δḠmn[ϕ]

δϕp

δ2Γsym
2PI

δGmnδGrs

∣

∣

∣

∣

Ḡ[ϕ]

= 0 . (3.18)

Then, evaluating eq. (3.17) for G = Ḡ[ϕ], one obtains

[

δ(α)ϕp
δḠmn[ϕ]

δϕp
− δ(α)Ḡmn[ϕ]

]

δ2Γsym
2PI

δGmnδGrs

∣

∣

∣

∣

Ḡ[ϕ]

= 0 . (3.19)

Assuming the invertibility of δ2Γsym
2PI /δGδG

∣

∣

Ḡ[ϕ]
, one gets

δ(α)ϕp
δḠmn[ϕ]

δϕp
= δ(α)Ḡmn[ϕ] . (3.20)
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In other words, the function Ḡ[ϕ] transforms covariantly under an infinitesimal gauge trans-

formation of its argument.16

Using eq. (2.21) and the fact that, by definition, the inverse free propagator G−1
0 does

not depend on the field ϕ, eq. (3.20) can be rewritten as

δ(α)ϕp
δΣ̄mn[ϕ]

δϕp
= −δ(α)Ḡ−1

mn[ϕ] , (3.21)

where

δ(α)Ḡ−1[ϕ] = −δAt Ḡ−1[ϕ] − Ḡ−1[ϕ] δA . (3.22)

Eq. (3.21) is valid for arbitrary field ϕ. Taking functional derivatives with respect to the

field ϕ and setting ϕ = ϕ̄, one directly obtains a hierarchy of symmetry identities for the 2PI

n-point vertex functions (2.34). It is remarkable that these identities have the very same

form as the usual Ward identities for the 1PI, or 2PI-resummed vertex functions (2.32),

as we show in the following. This is one of the main results of the present paper. It is to

be emphasized that this does not rely on the identification (2.36) of 2PI vertex functions

with 2PI-resummed vertex functions. We note that the analysis presented here trivially

applies to the case of arbitrary (non-anomalous) linearly realized global symmetries (for

which Sgf [ϕ] = 0). In that case, successive field-derivatives of eq. (3.21) generate the global

form (i.e. involving an integration over space-time) of the corresponding Ward identities.17

Using eqs. (3.3)–(3.5) and (3.22), we obtain the local version of the 2PI symmetry

identity (3.21) in QED:

[

qm δ(4)(x − z) + qn δ(4)(z − y)
]

iḠ−1
mn(x, y;ϕ) =

1

e
∂µ

z

δΣ̄mn(x, y;ϕ)

δAµ(z)
+ iψ(z)

δΣ̄mn(x, y;ϕ)

δψ(z)
− iψ̄(z)

δΣ̄mn(x, y;ϕ)

δψ̄(z)
. (3.23)

Below, we work out a few illustrative examples of the 2PI Ward identities which derive

from eq. (3.23). The simplest one is obtained by directly setting ϕ = ϕ̄ = 0 in eq. (3.23).

The (ψ̄, ψ)-component of the resulting equation reads

−
1

e
∂µ

z V
(2,1)
ᾱα;µ (x, y; z) =

[

δ(4)(x − z) − δ(4)(z − y)
]

D̄−1
ᾱα(x, y) , (3.24)

16This can easily be understood as follows: By definition, the function Ḡ[ϕ] realizes the minimum of

Γsym
2PI [ϕ,G] as one varies G. Now gauge invariance reads, for infinitesimal transformations,

Γsym
2PI [ϕ, Ḡ[ϕ]] = Γsym

2PI [ϕ + δ(α)ϕ, Ḡ[ϕ] + δ(α)Ḡ[ϕ]] .

It follows that Ḡ[ϕ] + δ(α)Ḡ[ϕ] realizes the minimum of Γsym
2PI [ϕ + δ(α)ϕ,G] as one varies G. One then needs

to have

Ḡ[ϕ + δ(α)ϕ] = Ḡ[ϕ] + δ(α)Ḡ[ϕ] ,

which is nothing but eq. (3.20).
17There are also local Ward identities associated with global symmetries, which involve correlation func-

tions with insertion of the corresponding Noether current operator, see e.g. [31]. These have been first

discussed in the context of 2PI methods in refs. [17]. Performing a similar analysis as presented here, one

can derive the corresponding local identities for 2PI vertices. However, they are more complicated than the

symmetry identities eq. (3.21) and we shall not discuss them further in this paper.
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where we employed a similar notation as in eq. (2.46) for the 2PI three-point function:

V
(2,1)
ᾱα;µ ≡ V

(3)

ψ̄ᾱψαAµ = −i
δΣ̄ᾱα

ψ̄ψ

δAµ

∣

∣

∣

∣

∣

ϕ̄

. (3.25)

Eq. (3.24) has the same form as the usual Ward identity relating the three-point photon-

fermion vertex function and the inverse fermion two-point function, here with 2PI vertex

functions.18 Similarly, taking successive derivatives of the (A,A)-component of eq. (3.23)

with respect to the electromagnetic field A and setting A = 0, ψ = 0 and ψ̄ = 0, we get,

using a similar notation,

∂σi
zi

V
(0,p+2)
µν;σ1···σi···σp(x, y; z1, · · · , zi, · · · , zp) = 0 , 1 ≤ i ≤ p . (3.26)

Again, this is the 2PI version of the familiar result that n-photon vertex functions are

transverse in momentum space.

Notice that eq. (3.26) only holds for 2PI n-photon vertex functions with n ≥ 3. In

fact, 2PI Ward identities do not impose any constraint on the photon two-point function

iḠ−1 ≡ iḠ−1
AA[ϕ̄] [23]. This is rooted in the fact that, contrarily to higher 2PI vertex

functions, the latter is defined as the solution of a stationarity condition, eq. (2.20), and

not as a field derivative of some functional. Indeed, in general, symmetries only constrain

the functional dependence of various quantities of interest, such as the ϕ and G-dependence

of the 2PI effective action Γ2PI[ϕ,G], eq. (3.11), the ϕ-dependence of the 2PI-resummed

effective action Γ[ϕ], eq. (3.13), or of the correlator Ḡ[ϕ], eq. (3.20). Therefore, symmetry

identities only concern the derivatives of these functionals.

As a general result, to be emphasized, the fact that the 2PI two-point function iḠ−1 ≡

iḠ−1[ϕ̄] does not, in general, satisfy the standard (1PI) Ward identities at finite approxima-

tion order does not constitute a direct violation of the symmetry constraints of the theory.

For instance, in QED, the 2PI photon polarization tensor — i.e. the photon self-energy

Σ̄AA[ϕ̄] — does not have to be transverse in momentum space at any finite approximation

order. Similarly, in scalar theories with spontaneously broken symmetry, the 2PI two-point

function is not constrained to have a Goldstone mode at any finite approximation order.

This is to be contrasted with the 2PI-resummed two-point function Γ(2) which, being

defined as a geometrical object — here the curvature of the 2PI-resummed effective action

in ϕ-space, see eq. (2.32) –, is constrained by Ward identities [11], see below. Only in the

exact theory, where the 2PI-resummed and 2PI two-point vertex functions are identical,

does the latter satisfies the usual Ward identities.

18For space-time translation invariant situations (e.g. in the vacuum), eq. (3.24) can be written in mo-

mentum space, where it has the more familiar form, leaving Dirac indices implicit,

−
1

e
kµ V (2,1)

µ (p;k) = iD̄−1(p + k) − iD̄−1(p) ,

where the Fourier transforms of the functions V
(2,1)

µ and D̄−1 are defined through the usual rela-

tions: (2π)4δ(4)(p + p′ + k)V
(2,1)

µ (p; k) ≡
R

x,y,z
eip·x+ip′

·y+ik·zV
(2,1)
µ (x, y; z) and (2π)4δ(4)(p + p′)D̄−1(p) ≡

R

x,y
eip·x+ip′

·yD̄−1(x, y).
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Another related remark concerns the fact that, among the p + 2 legs of the 2PI vertex

functions eq. (2.34), two do not correspond to ϕ-derivatives, but to the legs of the self-

energy Σ̄[ϕ]. It also follows from the above discussion that (2PI) Ward identities generally

do not apply to these particular legs. For instance, the identity (3.24) applies to the vertex

V
(3)

ψ̄ψ;A
= −iδΣ̄ψ̄ψ/δA, not to V

(3)

Aψ̄;ψ
= −iδΣ̄ψ̄A/δψ = −iδΣ̄Aψ/δψ̄ = −V

(3)

ψA;ψ̄
. Although they

also represent the photon-fermion vertex, the latter are not constrained by the underlying

symmetry. Similarly, eq. (3.26) for 2PI p + 2-photon functions only holds for the p legs

corresponding to ϕ-derivatives.

3.3 Ward identities for 2PI-resummed vertex functions

As shown previously, the 2PI-resummed effective action (2.23) satisfies the standard Ward

identities, eq. (3.13), as it should [11] (see also [16, 17, 19]). By taking derivatives of

eq. (3.13) with respect to ϕ and setting ϕ = ϕ̄ = 0, one generates the standard symmetry

relations between 2PI-resummed proper vertex functions (2.32). To compare the structure

of these identities with the ones derived in the previous subsection for 2PI vertex functions,

it is useful to introduce the 2PI-resummed two-point function in presence of a nonvanishing

field:

Γ(2)
mn[ϕ] ≡

δ2Γ[ϕ]

δϕnδϕm
. (3.27)

Obviously, 2PI-resummed n-point functions with n ≥ 2 can be obtained from the latter

by taking field derivatives evaluated at ϕ = ϕ̄: Γ(p+2) = δpΓ(2)/δϕp|ϕ̄. Taking two field

derivatives of eq. (3.13) and using the fact that the gauge fixing action is a quadratic

functional of the electromagnetic field only, one readily obtains the following equation:

δ(α)ϕp
δΓ

(2)
mn[ϕ]

δϕp
= δ(α)Γ(2)

mn[ϕ] , (3.28)

where

δ(α)Γ(2)[ϕ] = −δAt Γ(2)[ϕ] − Γ(2)[ϕ] δA . (3.29)

Eq. (3.28) merely states that the variation of the two-point function Γ(2)[ϕ] under a gauge-

transformation (3.3) of its argument is given by the gauge-transformation δ(α)Γ(2)[ϕ] of

Γ(2)[ϕ]. Taking further field derivatives of eq. (3.28), one generates the standard Ward

identities involving 2PI-resummed n-point functions with n ≥ 3.

Eqs. (3.28)–(3.29) are to be compared to (3.21)–(3.22). Since 2PI-resummed and 2PI

vertices are obtained as ϕ-derivatives of Γ(2)[ϕ] and Σ̄[ϕ] respectively, see eqs. (2.32) and

(2.34), it is clear that, as announced earlier, Ward identities derived from eq. (3.28) for

the former and from eq. (3.21) for the latter have the very same structure. We empha-

size once again that this result does not depend on identifying 2PI-resummed and 2PI

vertex functions, but relies solely on their respective definitions involving field derivatives.

This is important since 2PI-resummed and 2PI vertex functions differ in general at finite

approximation order. The remarkable result is that, if the given approximation satisfies

the symmetry requirement (3.11), the vertex functions defined in eq. (2.32) and eq. (2.34)

satisfy the standard Ward identities independently.
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For completeness, we write eq. (3.28) in a similar form as eq. (3.21):

−
[

qm δ(4)(x − z) + qn δ(4)(y − z)
]

iΓ(2)
mn(x, y;ϕ) =

1

e
∂x

µ

δΓ
(2)
mn(x, y;ϕ)

δAµ(z)
+ iψ(z)

δΓ
(2)
mn(x, y;ϕ)

δψ(z)
− iψ̄(z)

δΓ
(2)
mn(x, y;ϕ)

δψ̄(z)
. (3.30)

As an illustration, the (ψ̄, ψ)-component of this equation evaluated at ϕ = ϕ̄ = 0 is just

the famous relation between the 2PI-resummed three-point and two-point functions:

1

e
∂µ

z Γ
(2,1)
ᾱαµ (x, y, z) = i

[

δ(4)(x − z) − δ(4)(z − y)
]

Γ
(2,0)
ᾱα (x, y) . (3.31)

This is to be compared to eq. (3.24) for the corresponding 2PI vertices.

As already mentioned, there is an important difference between Ward identities for

2PI-resummed versus 2PI two-point vertex functions. Contrarily to the latter, iḠ−1[ϕ̄], the

2PI-resummed two-point function Γ(2) ≡ Γ(2)[ϕ̄], being defined as a geometrical object, is

constrained by a (1PI) Ward identity, obtained by deriving eq. (3.13) once with respect to

ϕ and setting ϕ = ϕ̄:

δ(α)ϕ̄nΓ(2)
mn = δ(α)ϕ̄n

δSgf [ϕ]

δϕnδϕm

∣

∣

∣

∣

ϕ̄

, (3.32)

where δ(α)ϕ̄ ≡ δA ϕ̄ + δB. In the QED case, with ϕ̄ = 0, eq. (3.32) states that the 2PI-

resummed two-photon function Γ(0,2) satisfies

∂µ
xΓ(0,2)

µν (x, y) = ∂x
µ

δ2Sgf [ϕ]

δAµ(x)δAν(y)
. (3.33)

For space-time translation invariant situations, this is the standard statement that the

longitudinal part of the photon two-point function in 4-momentum space does not receive

any loop correction. The corresponding 2PI-resummed photon polarization tensor Πµν ≡

δ2(Γ[ϕ] − S0[ϕ])/δAνδAµ is transverse in momentum space [11]:19

∂µ
xΠµν(x, y) = 0 . (3.34)

Finally, it is interesting to underline the deep relation between Ward identities for

2PI and 2PI-resummed vertex functions. For instance, recall that the 2PI-resummed two-

photon function is related to 2PI vertex functions through eq. (2.47). It is crucial that the

2PI three-point vertex V (2,1) ∝ δΣ̄ψ̄ψ/δA satisfies the Ward identity (3.24) for eq. (3.34)

to hold.

4. Gauge-invariant approximation schemes

So far, we have obtained (gauge) symmetry identities for the exact 2PI and 2PI-resummed

effective actions and n-point vertex functions. For practical purposes, it is desirable to

19Similarly, for O(N) scalar theories, the 2PI-resummed two-point function does have exact Goldstone

modes in the broken phase [16, 17].
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find approximation schemes which preserve these identities.20 To this aim, it is enough

to preserve eq. (3.11), or equivalently eq. (3.12). For instance, this directly implies the

covariance property (3.20) of the (approximated) function Ḡ[ϕ], from which Ward identities

for 2PI and 2PI-resummed vertex functions derive. Here we discuss symmetry preserving

approximation schemes in the context of the standard 2PI diagrammatic expansion [2].

Consider a general finite linear transformation of the superfield (2.5):

ϕ → ϕ(α) ≡ Aϕ + B , (4.1)

where A is a matrix and B a vector in superfield space, the finite analogs of the infinitesimal

δA and δB in eq. (3.3).21 The corresponding transformation of the connected correlator

(2.29) is linear:

G → G(α) ≡ AGAt . (4.2)

For the U(1) transformation (2.2), one has, explicitly,

A(x, y) = δ(4)(x − y) exp
(

iα(x)Q
)

, (4.3)

with Qmn = qmδmn, and

B(x) = (−∂α(x)/e, 0, 0)t . (4.4)

For instance, the components of the gauge-transformed correlator G(α) are given by

G(α)
mn(x, y) = eiqmα(x) Gmn(x, y) eiqnα(y) . (4.5)

Notice, in particular, that, since that electromagnetic field A has a purely affine transfor-

mation, the corresponding connected correlator G = GAA is invariant [23]:

G(α)
µν (x, y) = Gµν(x, y) . (4.6)

This is another way to see that the underlying gauge symmetry cannot put any constraint

on the 2PI photon two-point function.

The standard diagrammatic expansion of Γ2PI[ϕ,G] can be constructed from the so-

called Cornwall-Jackiw-Tomboulis (CJT) parametrization of the 2PI effective action [2].

For the functional Γsym
2PI [ϕ,G] defined in eq. (3.12) it reads

Γsym
2PI [ϕ,G] = Ssym[ϕ] +

i

2
Str LnG−1 +

i

2
StrG−1

cl [ϕ]G + Γ2[ϕ,G] , (4.7)

with the classical propagator

iG−1
cl,mn[ϕ] ≡ (−1)qn

δ2S[ϕ]

δϕmδϕn
. (4.8)

and where Ssym[ϕ] has been defined in eq. (3.1). Here Γ2[ϕ,G] is the sum of closed 2PI

diagrams with more than two-loops.22

20In particular, this is important for the purpose of renormalization [23, 24].
21We assume the same restrictions on A as before for δA.
22The CJT representation can be simply related to the interaction representation (2.19) through

Γint[ϕ, G] = Sint[ϕ] +
i

2
StrG−1

int [ϕ]G + Γ2[ϕ,G] ,

– 20 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
7

We would like to show that, within eq. (4.7), one can identify elementary contributions

(each of which involves a finite number of terms) which are independently invariant under

the transformation (4.1)-(4.2) and thus which satisfy eq. (3.11). The first term in eq. (4.7)

is clearly gauge-invariant since, by definition,

Ssym[ϕ] = Ssym[ϕ(α)] . (4.9)

As for the second term, it can be rewritten as a Gaussian functional integral (see ap-

pendix B):
i

2
Str LnG−1 = −iLn

∫

Dϕ̂ exp

{

1

2
ϕ̂t iG−1 ϕ̂

}

+ const. , (4.10)

where ‘const.’ denotes a G-independent contribution. A gauge transformation (4.2) of G,

can be absorbed in a change of integration variable on the r.h.s. . The corresponding

Jacobian is simply a constant for the linear transformation (4.2). Thus the second term on

the r.h.s. of eq. (4.7) is gauge-invariant up to an additive, unphysical constant:23

i

2
Str Ln

(

G(α)
)−1

=
i

2
Str LnG−1 − iStr LnA . (4.11)

To analyze the gauge transformation of the third (one-loop) term in eq. (4.7), we make

use of the decomposition (3.1) and write

G−1
cl [ϕ] = G−1

sym[ϕ] + G−1
gf , (4.12)

where G−1
sym[ϕ] and G−1

gf are defined as G−1
cl [ϕ] in eq. (4.8) with S[ϕ] replaced respectively

by Ssym[ϕ] and Sgf [ϕ]. Note that for quadratic gauge fixing actions, G−1
gf is independent of

the field ϕ. It follows from eq. (4.9) that

At G−1
sym[ϕ(α)]A = G−1

sym[ϕ] , (4.13)

which immediately implies, using the cyclicity of the supertrace,24 that

Str
{

G−1
sym[ϕ(α)]G(α)

}

= Str
{

G−1
sym[ϕ]G

}

. (4.14)

As noted above, the term G−1
gf in eq. (4.12) is independent of ϕ and, therefore, invariant

under the gauge transformation (4.1). Moreover, since the gauge fixing action Sgf [ϕ] only

depends on the electromagnetic field A, one has

Str
{

iG−1
gf G

}

= Tr
{ δ2Sgf

δAδA
G

}

. (4.15)

This is clearly gauge-invariant since G ≡ GAA is, see eq. (4.6), and, for linear gauges,

δ2Sgf/δAδA is A-independent.

where iG−1
int,mn[ϕ] ≡ (−1)qnδ2Sint[ϕ]/δϕmδϕn. As mentioned previously, for cubic theories, eq. (2.37), the

ϕ dependence of the 2PI effective action is all contained in the classical and one-loop contributions and,

therefore, the functional Γ2 in eq. (4.7) is ϕ-independent: Γ2[ϕ,G] ≡ Γ2[G], see eq. (2.38).
23For the U(1) transformation (4.3), one has StrLnA = 0.
24One has: Str(AB) =

P

n,m(−1)qnAnmBmn =
P

n,m(−1)qmBmnAnm = Str(BA).
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Let us now consider the CJT functional Γ2[ϕ,G], which contains all the information

beyond one-loop order. A given diagram contributing to Γ2[ϕ,G] is in general not invariant

under (4.1)–(4.2) and one needs to consider particular subsets of diagrams to build gauge-

invariant contributions. In particular, the vertices needed to construct the diagrammatic

representation of Γ2[ϕ,G] are obtained from the shifted action S[ϕ+ϕ̂], as explained before.

Some of these vertices depend on the field ϕ and have, therefore, a non trivial gauge-

transformation. For instance, it is clear that the affine contribution (i.e. B in eq. (4.1)) to

the gauge-transformation of a ϕ-dependent vertex in a given diagram can only be canceled

by the gauge-transformation of another diagram.

The construction of (gauge-)invariant subset of diagrams is made simple if one expresses

the diagrammatic expansion of the Γ2[ϕ,G] in terms of the classical vertices

λ
(n)
1···n[ϕ] ≡

δnS[ϕ]

δϕn · · · δϕ1
. (4.16)

For n ≥ 3, there is no contribution from the (quadratic) gauge-fixing action to these ver-

tices and, therefore, their gauge-transformation is completely determined by the symmetry

property (4.9):

λ
(n)
m1···mn [ϕ(α)] = λ

(n)
p1···pn [ϕ]A−1

p1m1
· · · A−1

pnmn
. (4.17)

Notice that the classical vertices can contain differential operators which act on the local

gauge-transformation matrices A−1 in eq. (4.17). Now, consider such a vertex plugged into

a given diagram in the 2PI expansion. There will be n propagator lines attached to it,

giving rise to a contribution of the form:

λ
(n)
m1···mn [ϕ]Gm1a1 · · · Gmnan , (4.18)

where the endpoints a1 · · · an are to be attached to other classical vertices, elsewhere in the

diagram. A gauge transformation of this contribution reads

λ
(n)
m1···mn [ϕ(α)]G(α)

m1a1
· · · G(α)

mnan

= λ
(n)
m1···mn [ϕ(α)]Am1p1 · · · Amnpn Gp1b1 · · · Gpnbn At

b1a1
· · · At

bnan

= λ
(n)
p1···pn [ϕ]Gp1b1 · · · Gpnbn At

b1a1
· · · At

bnan
, (4.19)

where we used eq. (4.17). Clearly, the gauge-transformations corresponding to the end-

points m1 · · ·mn of the propagators attached to the (classical) vertex under consideration

cancel with the gauge-transformation of the vertex itself. The gauge-transformation corre-

sponding to the endpoints a1 · · · an are to be canceled in a similar manner with that of the

vertices to which these endpoints are attached in the (closed) diagram.25 In conclusion, we

see that in order to construct (gauge-)invariant subsets of closed 2PI diagrams contributing

to Γ2[ϕ,G], it is sufficient to organize the diagrammatic expansion in terms of the classi-

cal vertices (4.16), which merely correspond to summing all vertices of the shifted action

25Notice that the one-loop term discussed previously is a particular case of the present argument, suitably

adapted to the case for n = 2.
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S[ϕ + ϕ̂] having the same number of ϕ̂-legs. Indeed, it is this sum, and not the individual

vertices, which has a simple gauge-transformation property, eq. (4.17).

The situation is particularly simple for cubic theories (2.37), such as QED, since, in

that case, there is a single, ϕ-independent vertex:26

λ(3)
mnp = λmnp . (4.20)

Therefore, the functional Γ2[G] is simply the set of closed 2PI diagrams made with lines

G and the classical vertex. It follows from the above discussion that any such diagram

is gauge-invariant. It is interesting to see the above general argument at work in this

particular case. At each vertex of the diagram are attached three lines, giving a term of

the form

λmnp Gma1(x, x1)Gna2(x, x2)Gpa3(x, x3) , (4.21)

where x is the space-time location of the vertex, to be integrated over, and the ai’s and xi’s

are to be attached to other vertices in the diagram. In QED, the local phase factor from the

gauge transformation (4.5) associated with this vertex is given by ei(qm+qn+qp)α(x) = 1 since

the classical vertex λmnp 6= 0 only for qm + qn + qp = 0. In conclusion, any approximation

of the 2PI effective action based on the 2PI diagrammatic expansion is gauge invariant.

In theories with more than cubic interactions, higher order classical vertices appear in

the construction of Γ2[ϕ,G]. In that case, individual diagrams are not separately gauge-

invariant. The procedure described above allows one to build systematic gauge-invariant

approximations. This is illustrated in appendix D in the case of SQED.

5. Conclusion and outlook

In this paper, we have studied the implications of the symmetries of the classical action

on the quantum theory in the context of 2PI functional techniques27 for abelian gauge

theories. Our results apply to theories with arbitrary linear global symmetries as well.

It is known that approximations based on 2PI techniques generally do not satisfy the

standard Ward identities associated with the underlying symmetries of the theory. This

fact should, however, be interpreted with care. The main point of the present paper is

to emphasize that symmetry constraints on the 2PI effective action can be quite different

from the usual ones for the 1PI effective action. A careful analysis of symmetry constraints

in the 2PI framework in fact reveals that the relevant (i.e. 2PI) Ward identities are fulfilled

by generic 2PI approximations.

We have derived generalized (2PI) Ward identities for the various n-point vertex func-

tions in the 2PI framework and have devised a systematic procedure to build approximation

schemes which satisfy the symmetry constraints at any finite order in the context of the

diagrammatic representation of the 2PI functional. For instance, in QED, each closed 2PI

diagram satisfies the required symmetry constraints. As a consequence, the 2PI Ward

identities are exactly satisfied at any approximation order.

26That is the reason why the CJT functional Γ2 is independent of ϕ, see eq. (2.38).
27Higher (nPI) effective actions are discussed in appendix A.
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Furthermore, we have shown that the inverse propagator iḠ−1[ϕ], which defines the

extremum of the 2PI effective action in propagator space, is not directly constrained by the

underlying symmetry. Therefore, the well-known fact that the latter does not satisfy usual

symmetry constraints (e.g. the corresponding photon polarization tensor is not transverse

in momentum space) for generic approximations does not constitute a violation of (2PI)

Ward identities.

We have also shown that, as a consequence of 2PI Ward identities, the so-called 2PI-

resummed effective action, i.e. the 2PI functional evaluated at its extremum in propagator

space, Γ[ϕ] ≡ Γ2PI[ϕ, Ḡ[ϕ]], satisfies the standard symmetry constraints, as expected [11].

This generalizes previous results for global symmetries [16 – 18] (see also [19]) to abelian

gauge symmetries. In other words, the 2PI-resummed vertex functions, obtained as deriva-

tives of the 2PI-resummed effective action evaluated at the physical point ϕ = ϕ̄, satisfy

standard Ward identities.28 For instance, the 2PI-resummed photon polarization tensor in

QED is transverse in momentum space at any approximation order.

We have identified another class of n-point functions in the 2PI framework which ex-

actly satisfy the standard Ward identities at any approximation order. These “2PI vertex

functions” are obtained as field-derivatives of the two-point function Ḡ−1[ϕ] or, equiva-

lently, of the self-energy Σ̄[ϕ], evaluated at the physical point ϕ = ϕ̄. Alternatively, they

can be obtained as solutions of appropriate Bethe-Salpeter–like equations. Although 2PI-

resummed and 2PI vertex functions are identical in the exact theory, they differ in general

at finite approximation order. It is remarkable that they separately exactly satisfy the

standard Ward identities (except for the 2PI two-point function) at any order of approxi-

mation.

It is important to stress that the present results concern the bare (unrenormalized)

theory. A crucial issue is to check that the symmetry constraints mentioned above are

preserved after renormalization. This is the purpose of ref. [24]. There we show that

the Ward identities derived in the present paper play a crucial role in constraining the

possible UV divergences of the various n-point functions in the 2PI framework. In turn,

the counterterms needed to renormalize the theory at any finite approximation order do

satisfy the symmetry constraints derived here [24].

We believe the present analysis of 2PI Ward identities together with the renormaliza-

tion proofs presented in refs. [23, 24] provide a solid theoretical basis for practical appli-

cations of 2PI techniques to abelian gauge theories, see e.g. [35]. The study of nonabelian

gauge theories deserves further investigation.
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A. Slavnov-Taylor and Ward identities for nPI effective actions

We first recall the definitions of the n-particle-irreducible (nPI) effective action [3] (see

also [32]). We consider a general field theory for a set of bosonic and/or fermionic fields

which we collectively represent by a superfield ϕ. All correlation functions of the theory

can be obtained from the generating functional

eiW [K] ≡ eiW [K(1),...,K(n)] =

∫

Dϕ̂ eiS[ϕ̂]+i
Pn

p=1
1
p!

ϕ̂p K(p)

, (A.1)

where S[ϕ] is the classical action of the theory and K(1), . . . ,K(n) denote a set of 1-,. . .,n-

point classical sources, coupled to products of 1, · · · , n fields respectively. Here, we employ

the shorthand notation:

ϕ̂p K(p) ≡ ϕ̂n1 . . . ϕ̂np K
(p)
np...n1

. (A.2)

Notice that, due to the Grassmanian character of the fermionic components of ϕ, the sources

have the following symmetry property under permutation of any neighboring indices:

K(p)
n1n2...np

= (−1)qn1qn2K(p)
n2n1...np

. (A.3)

Correlation functions of superfield operators can be obtained by differentiation with respect

to the classical sources. For instance, one has

δLW [K]

δK
(p)
np ...n1

=
1

p!

〈

ϕ̂n1 . . . ϕ̂np

〉

≡
1

p!
C(p)

n1...np
, (A.4)

where the brackets denote an expectation value in presence of the classical sources, gener-

alizing the definition (2.27) to the case of p-point sources with 2 ≤ p ≤ n. Notice that the

functions Cn1...np defined in eq. (A.4) represent the full p-point correlators, including un-

connected contributions. We shall denote by Gn1...np the corresponding connected p-point

correlators (or cumulants). One has, for instance, G
(1)
1 = C

(1)
1 for the one-point correlator,

G
(2)
12 = C

(2)
12 − C

(1)
1 C

(1)
2 for the two-point correlator, etc. Using a shorthand notation similar

to the one employed before, see eq. (A.2), eq. (A.4) can be written as

δLW [K]

δK(p)
=

1

p!
C(p) . (A.5)

The n-particle-irreducible (nPI) effective action is defined as the multiple Legendre

transform of the generating functional (A.1):

ΓnPI[G] ≡ ΓnPI[G
(1), . . . ,G(n)] = W [K] −

n
∑

p=1

δLW [K]

δK(p)
K(p) (A.6)

It is traditionally parametrized in terms of the connected correlators G(p). However, for our

discussion on Slavnov-Taylor identities below, it proves useful to exploit its dependence on

the full correlators, the C’s. That is the reason why, in the following, we often consider
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functional derivatives of the nPI effective action with respect to the C’s. For instance, using

the same notation as before, one has the relations

δRΓnPI[G]

δC(p)
≡

δRΓnPI[G]

δC
(p)
np...n1

= −
1

p!
K(p)

n1...np
≡ −

1

p!
K(p) . (A.7)

Physical correlation functions are obtained for vanishing external sources.

The (1PI) effective action of the theory Γ[ϕ], that is the generating functional for n-

point vertex functions can be obtained as the nPI functional eq. (A.6) for vanishing p-point

sources with 2 ≤ p ≤ n. Writing ϕ ≡ G(1) for the one-point function, we have

Γ[ϕ] ≡ Γ1PI[ϕ] = ΓnPI[ϕ, Ḡ(2)[ϕ], · · · , Ḡ(n)[ϕ]] (A.8)

where the functions Ḡ(p)[ϕ], are obtained from eqs. (A.7) at vanishing sources, which are

easily shown to be equivalent to the stationarity conditions

δRΓnPI[G]

δG(p)

∣

∣

∣

∣

Ḡ[ϕ]

= 0 for 2 ≤ p ≤ n . (A.9)

Eq. (A.8) defines the nPI-resummed effective action.

We now consider the constraints that symmetries of the classical theory put on nPI

effective actions. Here, we consider a general (local, nonlinear, etc.) continuous symmetry.

We write the classical action as

S[ϕ] = Ssym[ϕ] + Ssb[ϕ] (A.10)

where Ssym[ϕ] is invariant under the infinitesimal transformation

ϕ → ϕ + δ(α)ϕ , (A.11)

and we allow for an explicit symmetry breaking term Ssb[ϕ] (for instance a gauge-fixing

term in gauge theories). In general, the infinitesimal variation δ(α)ϕ can be a nonlinear,

space-time dependent, functional of ϕ.

Using similar manipulations as those leading to eq. (3.6), one easily obtains the fol-

lowing symmetry identity:

〈

δ(α)Ssb[ϕ̂] +

n
∑

p=1

1

(p − 1)!
δ(α)ϕ̂ ϕ̂p−1 K(p)

〉

= 0 , (A.12)

where we used a similar notation as before:29

δ(α)ϕ̂ ϕ̂p−1 K(p) ≡ δ(α)ϕ̂n1 ϕ̂n2 . . . ϕ̂np K
(p)
np...n1

. (A.13)

Defining the variation of the correlators C(p), introduced previously, as

δ(α)C(p)
n1...np

=
〈

δ(α)ϕ̂n1 ϕ̂n2 . . . ϕ̂np

〉

+ . . . +
〈

ϕ̂n1 ϕ̂n2 . . . δ(α)ϕ̂np

〉

, (A.14)

29In deriving eq. (A.12), we made use of the symmetry property eq. (A.3).
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and using eq. (A.7) to eliminate the sources K(p) in eq. (A.12), one has

n
∑

p=1

δ(α)C(p) δRΓnPI[G]

δC(p)
=

〈

δ(α)Ssb[ϕ̂]
〉

, (A.15)

or, equivalently, recognizing the l.h.s. as the change δ(α)ΓnPI[G] of the nPI functional under

the symmetry transformation eq. (A.14),

δ(α)ΓnPI[G] =
n

∑

p=1

δ(α)G(p) δRΓnPI[G]

δG(p)
=

〈

δ(α)Ssb[ϕ̂]
〉

. (A.16)

Here the sources K on the r.h.s. are given as functions of the G’s by eq. (A.7). Eq. (A.16)

makes clear that, although, we made use of the correlators C(p) in deriving eq. (A.15), ev-

erything can finally be expressed in terms of the connected correlators G(p). The variations

δ(α)G(p) under the infinitesimal transformation can be simply obtained from eq. (A.14) by

replacing the expectation values 〈· · ·〉 by connected expectation values 〈· · ·〉c. For vanishing

symmetry breaking Ssb[ϕ] = 0, eq. (A.16) states that the nPI functional is invariant under

the transformations G(p) → G(p) + δ(α)G(p), as defined above. This generalizes the standard

(1PI) Slavnov-Taylor identity to nPI effective actions. Of course eq. (A.16) contains, as

a particular case for n = 1, the standard (1PI) Slavnov-Taylor identities. Equivalently,

setting G(p) → Ḡ(p)[ϕ] for 2 ≤ p ≤ n in eq. (A.15) and using eq. (A.9), one recovers,

in the absence of symmetry breaking, the standard Slavnov-Taylor identities for the nPI-

resummed effective action Γ[ϕ] [33].

In general, Slavnov-Taylor identities are difficult to exploit because the transforma-

tions (A.14) of the p-point correlation functions involve higher-order correlation functions,

which are not arguments of the nPI functional and, therefore, need to be calculated for

arbitrary sources. However, this is not so for the class of linear symmetries considered

in the present paper, where F [ϕ] = Aϕ + B, for which the transformation (A.14) of the

p-point correlator only involves lower or equal order correlation functions.

The results of section 3 are easily generalized to nPI effective actions. For instance

for QED (or SQED) in linear gauges, the symmetry-breaking action is given by the gauge-

fixing term: Ssb[ϕ] = Sgf [ϕ], which is a quadratic functional of the electromagnetic field

only. In that case, one easily shows that the functional

Γsym
nPI [G] = ΓnPI[G] − Sgf [ϕ] (A.17)

is gauge-invariant, i.e. invariant under the gauge-transformation (A.14). Taking functional

derivatives of this equation with respect to the G(p)’s, one generates the nPI generalization

of Ward identities. Moreover, since the gauge-fixing (or explicit symmetry-breaking) term

in (A.17) only depends on the one-point correlator ϕ ≡ G(1), one has

δRΓnPI

δG(p)
=

δRΓsym
nPI

δG(p)
for p ≥ 2 . (A.18)

It follows that, compare to eq. (3.20),

δ(α)ϕq
δRḠ

(p)[ϕ]

δϕq
= δ(α)Ḡ(p)[ϕ] for p ≥ 2 , (A.19)
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where the variations δ(α)Ḡ(p)[ϕ] are defined as in eq. (A.14) with K(p≥2) = 0. Eq. (A.19)

is valid for arbitrary field ϕ. Taking functional derivatives of both sides of the equality

and setting ϕ = ϕ̄, one generates an infinite hierarchy of nPI Ward identities relating

various p-point functions of the theory. For the exact theory, they are identical to the

usual Ward identities. However, for finite approximations, where the relation between the

variational vertex functions Ḡp and the p-point functions obtained by functional derivatives

of the (nPI-resummed) effective action Γ[ϕ] is not satisfied in general, these identities are

non-trivial.

B. The 2PI effective action in the superfield formalism

Using the textbook formulae for multi-dimensional Gaussian integrals on c-numbers xi,

i = 1, . . . , Nb, and a-numbers ξa, a = 1, . . . , Nf :

∫

dNbx e−
1
2
xixjMji+xiJi ∝ e−

1
2
tr ln M+ 1

2
xiM

−1
ij xj , (B.1)

where M is a symmetric Nb ×Nb matrix and J an Nb-component vector of c-numbers, and

∫

dNf ξ e−
1
2
ξaξbHba+ξaηa ∝ e+ 1

2
tr lnH+ 1

2
ηaH−1

ab
ηb , (B.2)

where H is an antisymmetric Nf×Nf matrix of c-numbers and η is an Nf -component vector

of a-numbers, it is a straightforward — though nontrivial — exercise to show that [34, 29]

∫

dNχ e−
1
2
χmχnMnm+χmJm ∝ e−

1
2
str lnM+ 1

2
JmM−1

mnJn , (B.3)

where χ = (x, ξ)t is an N -component superfield (N = Nb + Nf ), dNχ ≡ dNbx dNf ξ and str

denotes the supertrace:

strM ≡
∑

m

(−1)qmMmm . (B.4)

Here, the N × N matrix M is such that Mmn = (−1)qmqnMnm. The component Mmn is

a c-number if qm + qn is even, an a-number otherwise. Similarly, the component Jm of the

supervector J is a c-number if qm is even, an a-number otherwise.

For the free theory, with classical action given by eq. (2.9), the generating functional

(2.12) is Gaussian and can be computed exactly (beware of factors i):

W [J ,K] =
i

2
Str lnM +

i

2
JmM−1

mn Jn , (B.5)

where Str denotes the functional supertrace (it involves a space-time integration) and where

Mmn ≡ (−1)qnG−1
0,mn − iKmn . (B.6)

Using eqs. (2.14)–(2.15), one easily obtains, for the one- and two-point connected correla-

tors,

ϕm = iJnM
−1
nm and Gmn = (−1)qnM−1

mn . (B.7)
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Finally, the Legendre transform (2.16) is easily calculated. It can be expressed as

Γ2PI[ϕ,G] = S0[ϕ] +
i

2
Str lnG−1 +

i

2
StrG−1

0 G + const. (B.8)

This generalizes the standard expressions of the free part of 2PI functional in the cases

where only bosonic or fermionic degrees of freedom are involved [1 – 3].30 Notice that in

the general case, with both bosonic and fermionic degrees of freedom, mixed components

of the correlator must be included and the 2PI effective action is not just the sum of the

purely bosonic and the fermionic parts.

For the theory with interactions, one can parametrize the total effective action as in

eq. (2.19). The construction of the interaction part Γint[ϕ,G] as the set of closed 2PI

diagrams with lines given by G and vertices obtained from the shifted action S[ϕ + ϕ̂]

follows the steps of ref. [2].

C. 2PI and 2PI-resummed vertex functions

Here, we show that 2PI-resummed and 2PI proper vertex functions, defined in eqs. (2.32)

and (2.34), are identical in the exact theory, see also [2]. We start with the identity:

δϕm =
δLϕm

δJp
δϕn

δRJp

δϕn
, (C.1)

valid for an arbitrary variation δϕ. It follows that

(−1)qn+qnqp
δLϕm

δJp

δRJp

δϕn
= δmn . (C.2)

Now, it is clear from eq. (2.12) that, in the exact theory,

δLϕm

δJn

∣

∣

∣

∣

K=0

=
δ2
LW [J ,K = 0]

δJmδJn
= iḠmn[ϕ] , (C.3)

where it is understood that the leftmost derivative (here δL/δJm) is to be taken first. One

has also, from eqs. (2.17), (2.20) and (2.23),

δRJp

δϕn

∣

∣

∣

∣

K=0

= −
δ2
RΓ[ϕ]

δϕnδϕp
. (C.4)

Therefore, eq. (C.2) reads

Ḡmp[ϕ]
δ2
RΓ[ϕ]

δϕpδϕn
= i(−1)qnδmn , (C.5)

which is equivalent to eq. (2.35). The identity between 2PI-resummed and 2PI vertex

functions in the exact theory, eq. (2.36), follows.

30The standard expression of the 2PI effective action in the case with only fermionic degrees of freedom [2],

discarding mixed correlators F and F̄ (see eq. (2.26)), can be obtained from eq. (B.8), by replacing G−1
0 and

G by the free inverse fermion propagator D−1
0 and the connected correlator D respectively, and by replacing

the factors i/2 on the r.h.s. by factors −i. The minus sign comes from the definition of the supertrace and

the factor 2 comes from the fact that for relativistic (Dirac) fermion species, one has to introduce a doublet

of spinor fields ξ ≡ (ψ, ψ̄t)t.
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D. Gauge-invariant approximations in 2PI scalar QED

The classical action for scalar QED (SQED) reads, in covariant gauge,

S[A,φ, φ†] =

∫

x

{

− φ†(∂2 + m2)φ +
1

2
Aµ

[

gµν∂2 − (1 − λ)∂µ∂ν

]

Aν

−ieAµ[φ∂µφ† − φ†∂µφ] + e2AµAµφ†φ

}

, (D.1)

where φ is a complex scalar field and λ is the gauge-fixing parameter. Apart from the

gauge-fixing term, it is invariant under the gauge transformation

φ(x) → eiα(x)φ(x) , φ†(x) → e−iα(x)φ†(x) , Aµ(x) → Aµ(x) −
1

e
∂µα(x) , (D.2)

where α(x) is an arbitrary real function. Following the analysis presented in the paper, one

introduces the superfield ϕ ≡ (A,φ, φ†)t and the corresponding correlator G as in (2.28).

The gauge transformation of the latter is given by eq. (4.5). Clearly, the results of section 3

directly apply to this case. Note that this includes the possibility of spontaneously broken

gauge symmetry.

For what concerns the construction of gauge-invariant approximations to the 2PI ef-

fective action, the situation is more involved than in spinor QED, see section 4, owing to

the presence of both a derivative trilinear coupling and a quartic coupling in the classical

action (D.1). When involved in a given diagram of the 2PI expansion, the former acts on

the scalar leg of (mixed) propagators attached to the vertex, giving rise to a nontrivial

gauge transformation of the diagram. Similarly, the quartic coupling gives rise to an Aµ-

dependent trilinear vertex in the shifted action S[ϕ + ϕ̂], which also leads to a nontrivial

gauge transformation of any diagram in which it is involved. In order to build gauge-

invariant approximations, one has to identify gauge-invariant subsets of diagrams, where

these nontrivial gauge transformations cancel.

The general procedure described in section 4 teaches us to organize the diagrammatic

expansion in terms of the classical three- and four-point vertices

λ(3)
µ (x, y, z;A) ≡

δ3S[A,φ, φ†]

δAµ(z)δφ(x)δφ†(y)

= −ieδ(4)(x − z)δ(4)(y − z)
[

Dx
µ(A)† − Dy

µ(A)
]

(D.3)

and

λ(4)
µν (x, y, z, t) ≡

δ4S[A,φ, φ†]

δAν(t)δAµ(z)δφ(x)δφ†(y)

= 2e2gµνδ(4)(x − z)δ(4)(y − z)δ(4)(z − t) , (D.4)

where we have introduced the covariant derivative Dx
µ(A) ≡ ∂x

µ − ieAµ(x). Consider then a

given 2PI diagram involving the derivative, field-dependent three-point vertex λ(3). Clearly,

the covariant derivatives act on the scalar leg of (mixed) propagators attached to the vertex,

giving rise to a mere local phase factor under a gauge transformation. The phase factors
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associated with the two scalar legs attached to the vertex cancel with each other, in a

similar way as in QED, see eq. (4.21). A similar cancellation of phase factors arises at each

four-point vertex λ(4).
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